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Abstract— We obtain the first online algorithms for the
node-weighted Steiner tree, Steiner forest and group Steiner
tree problems that achieve a poly-logarithmic competitive
ratio. Our algorithm for the Steiner tree problem runs in
polynomial time, while those for the other two problems take
quasi-polynomial time. Our algorithms can be viewed as on-
line LP rounding algorithms in the framework of Buchbinder
and Naor (Foundations and Trends in Theoretical Computer
Science, 2009); however, while the natural LP formulation of
these problems do lead to fractional algorithms with a poly-
logarithmic competitive ratio, we are unable to round these
LPs online without losing a polynomial factor. Therefore, we
design new LP formulations for these problems drawing on a
combination of paradigms such as spider decompositions, low-
depth Steiner trees, generalized group Steiner problems, etc.
and use the additional structure provided by these to round
the more sophisticated LPs losing only a poly-logarithmic
factor in the competitive ratio. As further applications of our
techniques, we also design polynomial-time online algorithms
with poly-logarithmic competitive ratios for two fundamental
network design problems in edge-weighted graphs: the group
Steiner forest problem (thereby resolving an open question
raised by Chekuri et al (SODA 2008)) and the single source
�-vertex connectivity problem (which complements similar
results for the corresponding edge-connectivity problem due
to Gupta et al (STOC 2009)).

1. INTRODUCTION

Network design problems, where the goal is to select

a minimum cost subgraph of a given graph satisfying

a given set of connectivity constraints, have played a

crucial role in recent developments of many algorithmic

paradigms. Perhaps the most well-known problem in

this suite is the Steiner tree problem, in which the

selected subgraph must connect1 a subset T = {ti : 1≤
i ≤ k} of designated vertices called terminals. In this

paper, we consider the node-weighted (NW) version of

this problem (where both edges and vertices have costs)

in the classical online model (for the online model, see

e.g. [6]), where the input graph G = (V,E) is known in

∗
Part of this work was done when the first and third authors were

visiting, and the second author was an intern at Microsoft Research,
Redmond, USA.

1A graph is said to connect a set of vertices T if it contains at least
one path between every pair of vertices in T .

advance, but the terminals arrive online. The algorithm

needs to ensure that at any stage of the online process,

the subgraph selected thus far connects the terminals

that have already arrived. We give the first algorithm for

this problem with poly-logarithmic competitive ratio.2

Node weights are often used to model various prac-

tical scenarios such as the equipment cost at nodes

of a real network, the load on network switches and

routers [23], the latency and cost of recovery from

power outages in electrical networks [21], etc. Further,

from a theoretical perspective, node weights serve to

unify edge-weighted network design problems and other

classical covering problems such as set cover, facility

location, etc. In fact, the NW Steiner tree problem,

besides being a classical network design problem itself,

also unifies (and generalizes) two fundamental opti-

mization problems: set cover3 and edge-weighted (EW)
Steiner tree (where only edges have costs). It is therefore

somewhat surprising that no online algorithm with poly-

logarithmic competitive ratio was known for the NW

Steiner tree problem in spite of such algorithms being

known for these two important special cases:

• Alon et al [3] gave an algorithm for the online set
cover problem by rounding (online) a fractional

solution obtained from an LP-based4 primal-dual

algorithm with multiplicative updates (for a com-

prehensive survey on this technique, see [7]); this

algorithm has poly-logarithmic competitive ratio.

• Imase and Waxman [24] showed that the natural

greedy algorithm has a logarithmic competitive

ratio for the online EW Steiner tree problem.

Part of the challenge in generalizing the above results

lies in the contrasting techniques used to obtain them.

2For a minimization problem, the competitive ratio of an online
algorithm is the maximum ratio between the algorithmic solution and
the (offline) optimal solution over all input sequences.

3Given a collection of subsets of a universe with respective costs,
the set cover problem asks for a minimum cost sub-collection such
that for every element of the universe, at least one subset containing
it is in the sub-collection.

4LP stands for linear programming.
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Figure 1. (a) A counter-example to a greedy algorithm for the online
node-weighted Steiner tree problem. All the curved edges have cost
1−ε and the straight edges have cost 0. Vertex v has cost 1; all other
vertices are terminals and have cost 0. In this example, the vertices
r, t1, t2, . . . , tk appear as terminals. Since each terminal has a private
path of cost 1−ε to r, the greedy algorithm selects these private paths
with total cost (1−ε)k, whereas the optimal solution chooses the paths
through vertex v and has cost 1. Choosing ε to be an arbitrarily small
positive constant leads to a lower bound of k on the competitive ratio
of this algorithm. (b) An example exhibiting the difficulty of online
rounding of the natural LP relaxation of NW Steiner tree. If each
edge and vertex has a value of 1/

√
n in the fractional solution, then

an independent rounding of the edges and vertices does not produce
a feasible solution. On the other hand, since the value on an edge
or vertex accumulates over multiple rounds, dependent rounding may
produce an integer solution that is polynomially more expensive than
the fractional solution.

We can easily rule out the greedy algorithm for the

online NW Steiner tree problem (see Figure 1(a) for

an input instance on which the greedy algorithm has a

polynomial competitive ratio). On the other hand, for

the LP-based approach, no online rounding technique

is known for the standard LP formulation even in the

EW case.

A key to understanding NW Steiner tree instances are

spider decompositions, which were introduced by Klein

and Ravi [26] for the offline version of the problem. In

the online problem, it is a substantial challenge to even

define spiders because of the dynamically changing set

of terminals. We overcome this obstacle, and our key

technical contribution in solving the online NW Steiner

tree problem is two-fold:

• We prove a surprising structural property of NW

Steiner trees showing that if we are ready to

settle for a logarithmic loss, then the cost on very

few vertices (and no edge) needs to be shared

between terminals. This is in sharp contrast to

the usual notion that the main challenge in the

Steiner tree problem is in choosing between cheap

edges/vertices that a few terminals pay for and

expensive edges/vertices that many terminals share

the cost on.

• The above property substantially simplifies the

structure of a spider decomposition. This lets us

write a (somewhat sophisticated) LP for the NW

Steiner tree problem that unifies the set cover and

EW Steiner tree problems, and sheds new light on

the structure of the latter.

We then observe that this LP is identical to a non-
metric facility location problem, for which Alon et
al [2] gave an online algorithm with poly-logarithmic

competitive ratio. Perhaps surprisingly, our algorithm

exactly yields the greedy algorithm for EW Steiner

tree [24] and the primal-dual algorithm for set cover [2],

two algorithms that do not share any apparent similarity,

when specialized to their respective instances.

Two generalizations of the Steiner tree problem that

have also been extensively studied are:

• The Steiner forest problem, in which the subgraph

must connect each pair (si, ti) in a designated set of

vertex pairs T = {(si, ti) : 1≤ i≤ k} called terminal
pairs.

• The group Steiner tree problem, in which the

subgraph must connect the root vertex r to at

least one vertex from every set Ti in a designated

collection of vertex subsets T = {Ti : 1 ≤ i ≤ k}
called terminal groups.

While online algorithms with poly-logarithmic competi-

tive ratios were known for the EW version of both these

problems (see [4], [5] and [2] respectively), no non-

trivial competitive ratio was known for the NW version.

We give the first online algorithms for these problems

with a poly-logarithmic competitive ratio. In fact, we

give an algorithm for a somewhat more general problem

(called the group Steiner forest problem) that unifies

the above two problems. As further applications of

our techniques, we also obtain polynomial-time online

algorithms for the EW group Steiner forest problem and

the EW single-source �-vertex connectivity problem. We

formally define our problems and state our results next.

1.1. Our Results

We start by formally defining the online NW Steiner

tree problem. Throughout the paper, for a graph G =
(V,E), let |V |= n and |E|= m. For a set cover instance,

n and m respectively denote the number of elements and

the number of sets.

The Online Node-Weighted Steiner Tree Problem.
We are given (offline) an undirected graph G = (V,E),
with cost ce for edge e ∈ E, and cost cv for vertex



v ∈ V . A sequence of vertices (called terminals) T =
(t1, t2, . . . , tk) (ti ∈ V for 1 ≤ i ≤ k) appear online; the

algorithm needs to maintain a subgraph H of G that

connects all the terminals, while minimizing the total

cost of vertices and edges in H. Our main result is the

following theorem.

Theorem 1. There is a polynomial-time randomized
online algorithm for the node-weighted Steiner tree
problem with a competitive ratio of O(logn log2 k).

We note that there is a lower bound of Ω(logn logk)
on the competitive ratio of this problem. This follows

from a recent lower bound of Ω(logm logn) on the

competitive ratio of any randomized polynomial time

algorithm for the online set cover problem, under the

BPP �= NP assumption [27].

We now define the group Steiner forest problem,

which unifies (and generalizes) the Steiner forest prob-

lem and the group Steiner tree problem.

The Online Node-weighted Group Steiner For-
est Problem. We are given (offline) an undirected

graph G = (V,E) with cost ce for edge e ∈ E, and

cost cv for vertex v ∈ V . A sequence of pairs of

vertex subsets (called terminal group pairs) T =
((S1,T1),(S2,T2), . . . ,(Sk,Tk)) (Si,Ti ⊆ V for 1 ≤ i ≤ k)

appear online; the algorithm needs to maintain a sub-

graph H of G that connects at least one pair of vertices

si ∈ Si, ti ∈ Ti for each terminal group pair (Si,Ti), while

minimizing the total cost of vertices and edges in H.

(Note that the Steiner forest and group Steiner tree

problems are special cases with |Si| = |Ti| = 1, ∀i and

Si = {r}, ∀i respectively.) We obtain an online algorithm

for this problem with poly-logarithmic5 competitive

ratio.

Theorem 2. There is a quasi-polynomial-time6 ran-
domized online algorithm for the node-weighted group
Steiner forest problem with a competitive ratio of
O(polylog(n,k)).

Online Edge-weighted Network Design Problems.
Our techniques also lead to new results in online EW

network design. First, we give a polynomial-time online

algorithm for the EW group Steiner forest problem, thus

resolving an open question raised by Chekuri et al [11]

in the affirmative.

5The exact competitive ratio in Theorem 2 is O(log7 k log3 n), while
that in Theorem 3 is O(log5 n logk).

6An algorithm is said to be quasi-polynomial-time if its time
complexity is O(|I|log |I|), where I is the input to the algorithm.

Theorem 3. There is polynomial-time randomized on-
line algorithm7 for the edge-weighted group Steiner for-
est problem with a competitive ratio of O(polylog(n,k)).

Next, for the EW single-source �-vertex connectivity
problem, where the goal is to find a minimum cost

subset of edges such that each terminal has at least �
vertex-disjoint paths to a fixed root vertex, we obtain

the following theorem.

Theorem 4. There is a polynomial-time deterministic
online algorithm for the edge-weighted single-source �-
vertex connectivity problem with a (bi-criteria)8 com-
petitive ratio of

(
O
(

� logk
ε

)
,2+ ε

)
for any ε > 0.

This theorem complements the results of Gupta et
al [22] for the corresponding online edge-connectivity

problem.

1.2. Our Techniques

As noted earlier, the NW Steiner tree problem gen-

eralizes both the EW Steiner tree problem and the

set cover problem; therefore, a natural approach is

to unify (and generalize) the online algorithms for

these problems. We first discuss the challenges faced

by these approaches. For the online EW Steiner tree

problem, there are mainly two approaches. The first

one is the greedy algorithm (each terminal connects

via a shortest path to the previous terminals) which

is known to be O(logk)-competitive. Unfortunately, for

the NW version, the greedy algorithm has a polynomial

competitive ratio (see Figure 1(a)). The second approach

is based on probabilistic tree embeddings [17], which

have been successfully used by Gupta et al [22] even for

higher connectivity requirements in EW online settings.

However, such tree embeddings do not exist if vertices

have costs, ruling out such an approach.

The online set cover problem has an O(logm logn)
competitive algorithm [3] which works by first solving

online the standard LP within an O(logm) factor, and

then adapting the randomized rounding method for set

cover to work online, losing another factor of O(logn).
Using the methods of [2] for online covering of cuts

in a graph, it is not hard to show that a fractional

solution to the standard LP formulation of the NW

Steiner tree problem can be computed online and has

7In fact, our (online) algorithm is somewhat simpler than the
previously known offline algorithm for this problem [11], though
the previous algorithm has a slightly better approximation ratio of
O(log2 n log2 k) (versus O(log5 n logk) for our algorithm).

8A bi-criteria competitive ratio of (a,b) for an �-connectivity
problem implies that the solution produced by the online algorithm
achieves a connectivity of �/b and is at most a factor of a more
expensive than the optimal offline solution for connectivity �.



a poly-logarithmic competitive ratio. Now, rounding

the fractional solution online (as in set cover) is the

natural approach to obtaining an online algorithm with

a poly-logarithmic competitive factor. However, this

LP appears to be too weak to allow for this kind of

rounding without losing a polynomial factor in the

competitive ratio (see Figure 1(b) for an illustrative

example). Moreover, even for the EW Steiner tree

problem, we do not know how to round a fractional

solution to this LP. In fact, one of our main contributions

is developing an approach that unifies two seemingly

different algorithms: the greedy algorithm for the EW

Steiner tree problem and the online LP rounding based

approach to the set cover problem. We describe below

our new approach.

Observe that one can view a solution to the online

Steiner tree problem as a collection of paths, one from

each terminal to another terminal that appeared earlier

in the online sequence. If each terminal could afford to

pay for its entire path (to the previous terminal), then a

greedy algorithm suffices. In fact, for the EW version

this is indeed the case, and this property is crucial for the

analysis of the greedy algorithm in the online setting.

However, as indicated earlier, the example in Figure 1(a)

asserts that for the NW version this property is not true,

i.e. terminals must necessarily share the cost of these

paths in order to obtain a poly-logarithmic competitive

ratio.

A natural next step is bounding the extent of the

cost sharing among the terminals. For example, in

Figure 1(a), terminals t1, t2, . . . , tk only need to share the

cost on the solitary vertex v on their paths to terminal

r. Our key lemma, somewhat surprisingly, generalizes

this to show that if we are ready to sacrifice a factor

of O(logk) in the cost, then the cost sharing among

terminals can be restricted to a single vertex on every

path.

Lemma 1. Let G = (V,E) be an undirected graph with
vertex and edge costs cv,ce respectively. Suppose T ⊆V
is a set of k terminal vertices. Then, for any ordering
of the terminals t1, t2, . . . , tk, and for any subgraph GT
of G connecting all the terminals, there exists a set of
paths P2,P3, . . . ,Pk and a corresponding set of vertices
v2,v3, . . . ,vk such that
• Pi is a path from terminal ti to another terminal t j

which is earlier in the order, i.e., j < i,
• vi is on path Pi and is also contained in GT , and
• ∑k

i=2(c(Pi)− cvi)≤ O(logk) · c(GT ),
where c(Pi) is the sum of costs of vertices and edges on
Pi, and c(GT ) is the sum of costs of vertices and edges
in GT .
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Figure 2. The figure shows the relationships between the different
problems considered in this paper. The arrows show the reductions
from one problem to the other. Dashed lines represent the reductions
via generalization. The numbers on the reductions represent the
approximation factor lost in the reduction and the size of the reduction.

Our main challenge, then, is to select vertex vi and

path Pi for each terminal ti that arrives online. In

fact, the crux of this selection is in the choice of vi;

once vi is chosen, we can greedily add the cheapest

path from ti to vi, as well as the one from vi to any

t j, j < i, to obtain path Pi. Note that since terminal ti can

exclusively pay for path Pi, except for vertex vi, a greedy

choice of Pi, given vi, is optimal. This observation lets

us encode the Steiner tree problem as a non-metric

facility location problem for which an O(logn logk)-
competitive algorithm was given by Alon et al [2]. This

ultimately leads to Theorem 1.

The Online Node-weighted Group Steiner Forest
Problem. We now turn our attention to the online node-
weighted group Steiner forest problem. As with the

Steiner tree problem, the methods of [2] for online

covering of cuts in a graph can be used to obtain a

fractional solution with a poly-logarithmic competitive

ratio for the standard LP formulation of this problem.

However, this LP seems too weak to allow online

rounding; so one might hope for a strengthening of

the LP similar to Steiner tree. Unfortunately, for the

group Steiner forest problem, the cost sharing property

in Lemma 1 does not generalize.

Instead we give a different approach for strengthening

the LP. We first prove a structural result that there is a

near-optimal feasible solution in the form of a forest

such that every tree in the forest has small depth.9 The

technical lemma behind this claim is a generalization

of a similar result by Robins and Zelikovsky [32] on

EW graphs. In view of this structural result, we reduce

this problem on general graphs to trees in a natural

manner. The size of the tree instances we create are

9Edges in the low-depth trees represent paths in the original trees.



bounded by O(nh) where h is the height of the tree.

The structural lemma ensures that h = logk in our case,

thereby guaranteeing that the time complexity of our

algorithm stays quasi-polynomial.10

We complement the above reduction by giving an

online algorithm for the group Steiner forest problem

on a tree with poly-logarithmic competitive ratio.

Theorem 5. There is an O(h log3 n logk)-competitive
randomized online algorithm for the group Steiner forest
problem on trees of depth h with both edge and vertex
costs.

Combining all the pieces together, we obtain Theorem 2.

Online Edge-weighted Network Design Problems. An

another application of Theorem 5, we use randomized

low-distortion embeddings of graph into low-depth trees

(due to Fakcharoenphol et al [17]) to give an online

polynomial-time algorithm for the group Steiner forest

problem in EW graphs thereby proving Theorem 3. On

the other hand, the proof of Theorem 4 uses a combi-

nation of two sets of techniques: our decomposition of

spiders into paths in terminal arrival order (Lemma 1),

and a generalization of spider decompositions to higher

connectivity developed by Chuzhoy and Khanna [15]

(and simplified later by Chekuri and Korula [14]) for

the offline version of the problem.

1.3. Related Work

Klein and Ravi [26] introduced the notion of spider
decomposition to give the first (optimal11) O(logk)-
approximation algorithm for the (offline) NW Steiner

tree problem (and for some generalizations including

the NW Steiner forest problem). In subsequent work,

algorithms with better approximation ratios have been

developed for various special cases (see e.g. [16], [29],

[34]) and for higher (and more general) connectivity

requirements [31], [28], [15].

A different network model was considered by Guha

et al [21] and Moss and Rabani [30] where each node

has a cost and a profit, and the goal is to satisfy

the desired connectivity requirements while minimiz-

ing cost and maximizing profit. Buy-at-bulk network

design problems on NW graphs have also been stud-

ied previously [13]. Further, routing problems in node

capacitated graphs have also been studied extensively

(see e.g. GargVY04, ChekuriKS05, HajiaghayiKRL07,

10Since k is not known offline, we guess its value in constructing
the tree. When the actual number of terminal group pairs exceeds our
guess, we double our guess and start afresh. This adds an additional
factor of logk to the cost of our solution.

11The optimality is up to constants. In fact Guha and Khuller [20]
improved the constant factor in the approximation ratio.

FeigeHL08), though these problems do not typically

have a minimum cost objective.

Much of prior research in network design problems

has concentrated on EW versions. A series of algorithms

(e.g. [33], [32]) for (offline) EW Steiner tree has led to

the current best approximation factor of 1.39 [8]. For

the EW Steiner forest problem, Agrawal et al [1] (and

then Goemans and Williamson [19]) gave a primal-dual

algorithm with an approximation factor of 2 (which was

matched by Jain [25] for the generalized Steiner forest

problem). For the EW group Steiner tree and EW group

Steiner forest problems, Garg et al [18] and Chekuri

et al [11] gave the first algorithms to achieve a poly-

logarithmic approximation ratio (see [9], [10], [12] for

later improvements in group Steiner tree).

In the online model, Imase and Waxman [24] and

Awerbuch et al [4] respectively showed that the greedy

algorithm has a competitive ratio of O(logk) and

O(log2 n) for the EW Steiner tree and the EW Steiner

forest problem (see [5] for a subsequent O(logn)-
competitive algorithm for the EW Steiner forest prob-

lem). Later, Alon et al [2] used an online primal-

dual technique originally developed for set cover to

obtain the first poly-logarithmic competitive ratio for

the EW group Steiner tree problem. The design of a

poly-logarithmic competitive online algorithm for the

EW group Steiner forest problem was an open question

raised in [11]; we settle this question in the affirmative.

2. ONLINE NODE-WEIGHTED STEINER TREE

In this section, we prove Theorem 1 for which our

first goal is to prove Lemma 1, the key tool in our

algorithm. To prove this lemma, we need to introduce

the technique of spider decomposition of trees due to

Klein and Ravi [26].

Definition 1. A spider is a connected graph containing
at least three vertices, where at most one vertex has
degree greater than two. Each vertex that has degree
equal to one is called a foot, while the unique vertex
that has degree greater than two is called the head. If
no vertex has degree greater than two, then any of the
vertices with degree equal to two can be called the head.
A head-to-foot path is called a leg of the spider.

Klein and Ravi [26] defined the notion of a spider
decomposition of a tree and proved its existence.

Lemma 2 (Klein-Ravi [26]). Any tree R contains a set
of vertex-disjoint spiders such that the feet of the spiders
are exactly the leaves of the tree. This set is called a
spider decomposition.



t1 t2 t3 t4 t5

t1 t2 t3 t4 t5
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Figure 3. This figure shows a covering spider decomposition of a
tree. The leaves are ordered as {t1, t2, t3, t4, t5}. The spiders in the top
right corner form a spider decomposition of the tree. The red arrows
indicate the paths used by t2 to connect to t1, t3 to t2 and t5 to t4 in
the proof of Lemma 1. In the second recursive level, there are only
two terminals t1 and t4, which were the two earliest terminals in their
respective spiders. Thus, there is a single spider connecting them, and
this spider has a path from t4 to t1. In general, instead of two recursive
levels, we might have logk recursive levels.

We extend this lemma to produce a recursive spi-

der decomposition S of any tree R. Suppose L =
�1, �2, . . . , �k is an arbitrary ordering of the leaves of

tree R. A covering spider decomposition (see Figure 3

for an example) of R with respect to the ordering L
is a sequence of sets of spiders S1,S2, . . . with the

following properties:

• The spiders in any set Si are node-disjoint.

• S1 is a spider decomposition of R, i.e. the feet of

the spiders in S1 are the leaves of R.

• Let Si = {si1,si2, . . . ,siri}. Now, let the leaves of

R that are feet of spider si j be Li j; further let �i j
be the first among these leaves in the ordering L .

Then, the feet of the spiders in Si+1 are exactly

the leaves {�i j : 1≤ j ≤ ri}.
Before showing that such a recursive decomposition

of spiders exists for any tree, let us show that its

existence implies Lemma 1. Recall that in Lemma 1,

GT is a connected subgraph of G containing all the

terminals in T . Let R be a spanning tree of GT . We can

also assume that all terminals in T are leaves of R12.

Now, for each terminal ti, the path Pi and the vertex vi
on it (as in Lemma 1) are defined as follows.

Let ji be the maximum index j such that terminal ti
is a foot in a spider s∈S j. Let Ts be the ordering of the

terminals that are feet of spider s with respect to arrival

order. Then, we define the path pi as the path from ti to

the terminal immediately before ti in the sequence Ts.

12Otherwise, we can introduce a dummy terminal of cost 0 and
connect it to the original terminal using an edge of cost 0.

Also, vi is defined as the head of spider s. The following

property is a direct consequence of this definition.

Lemma 3. The sum of costs c(Pi)−cvi for all terminals
ti having ji = j for a fixed j is at most 2c(R).

Proof: The proof follows by observing that each leg

of a spider s ∈S j appears in path pi for at most two

terminals ti having ji = j. �

The next lemma follows from the fact that each spider

must contain at least two feet.

Lemma 4. The number of sets of spiders in a covering
spider decomposition of a tree containing O(k) vertices
is O(logk), irrespective of the ordering of the leaves.

The above two lemmas immediately imply Lemma 1.
Finally, we need to show that any tree has a covering

spider decomposition with respect to any ordering of the

leaves. We give a recursive procedure for constructing

such a decomposition. First, we use Lemma 2 to pro-

duce a spider decomposition S1. Then, we delete all

the legs of each spider in S1, except the leg that ends

at the leaf that appears earliest in the ordering among

the leaves in s. We now recursively construct the spider

decompositions S2,S3, . . . in the remaining tree. This

completes the proof of Lemma 1.
It is interesting to note that Lemma 1 implies that

no cost sharing is necessary in the edge-weighted case.

The next corollary formalizes this claim.

Corollary 1. Let G = (V,E) be an undirected graph
with edge costs only. Suppose T ⊆ V is a set of k ter-
minal vertices. Then, for any ordering of the terminals
t1, t2, . . . , tk, and for any subgraph GT of G connecting
all the terminals, there exists a set of paths P2,P3, . . . ,Pk
such that:
• Pi has endpoints ti and t j for some j < i,
• ∑k

i=2 c(Pi)≤ O(logk)c(GT ),
where c(Pi) is the sum of costs of edges on Pi, and c(GT )
is the sum of costs of edges in GT .

It follows from Corollary 1 that the greedy algorithm

for the online edge-weighted Steiner tree problem is

O(logk)-competitive, providing an alternative proof for

this well known result.
Our goal now is to select vertex vi and path Pi for

each terminal ti; in fact, as observed earlier, selecting

vi immediately selects the path Pi as the cheapest path

from ti to vi, and then from vi to some t j, j < i. This

observation allows us to encode the Steiner tree problem

as an integer linear program in Figure 4.

In the linear program, c(v)
i is the sum of the costs of

the cheapest path from terminal ti to vertex v and the



min ∑k
i=2 ∑v∈V c(v)

i x(v)
i + ∑v∈V cvyv s.t.:

∑
v∈V

x(v)
i ≥ 1 ∀ 2≤ i≤ k

x(v)
i ≤ yv ∀ v ∈V, 2≤ i≤ k

x(v)
i ∈ {0,1} ∀ v ∈V, 2≤ i≤ k
yv ∈ {0,1} ∀ v ∈V.

Figure 4. An integer linear program for the online node-weighted
Steiner tree problem.

cheapest path from v to any of previous terminals, i.e.

any t j, j < i. Both of these costs do not include the

cost of v. The variable x(v)
i is an indicator variable for

the event v = vi. The first constraint guarantees that for

each terminal ti, we choose at least one vertex as vi; the

second constraint guarantees that if a vertex v is chosen

as vi by at least one terminal ti, then we pay cv in the

objective value.

Now, we claim that the integer program in Figure 4

can be modeled as a (non-metric) facility location
problem. In an instance of the facility location problem,

we are given a set of possible facilities F and a set

of clients C. We are also given a facility opening cost

c f for each f ∈ F and a client connection cost ci f for

each client i ∈ C and f ∈ F . The goal is to open the

facilities and assign clients to open facilities such that

the sum of facility opening costs and connection costs

is minimized. In the online version of the problem,

the clients arrive online; when a client arrives, we can

either open a new facility and connect the client to it

or connect the client to a previously opened facility.

Alon et al [2] gave a randomized online algorithm

for the facility location problem with competitive ratio

O(logn logk), where |C|= k and |F |= n.

To model the integer program in Figure 4 as a facility

location problem, we give the following reduction.

Consider the set of terminals ti, 2 ≤ i ≤ k, as clients

and the vertices v ∈V as facilities. The cost of opening

a facility v is cv, while the connection cost of serving a

client ti using facility v is c(v)
i . Then, the linear program

in Figure 4 asks for the cheapest assignment of clients

to facilities. Using Lemma 1, we conclude that the

algorithm of Alon et al [2], applied to our facility

location instance, yields an O(logn log2 k)-competitive

algorithm for the online NW Steiner tree problem,

thereby proving Theorem 1.

3. ONLINE NODE-WEIGHTED GROUP STEINER

FOREST IN TREES

Recall that the group Steiner forest problem is defined

as follows. Let G = (V,E) be an undirected graph

and T = {(S1,T1),(S2,T2), . . . ,(Sk,Tk)} be k pairs of

subsets of vertices called terminal group pairs. We need

to find a minimum cost subgraph H such that for each

terminal group pair (Si,Ti), H connects at least one pair

of vertices si ∈ Si, ti ∈ Ti.

In this section, we give an online algorithm for this

problem when the input graph is a tree, and prove

Theorem 5. Our algorithm has two stages. In the first

stage (details omitted due to lack of space), we use

an online primal-dual algorithm for generalized cut

problems due to Alon et al [2] to obtain a fractional

solution for our problem satisfying the next lemma.

Lemma 5. The fractional solution for the online node-
weighted group Steiner forest problem has cost at most
O(α · logn), where α is the cost of an (offline) optimum
integer solution.

In the second stage of the algorithm, we give a

randomized algorithm for rounding the fractional so-

lution to an integer solution. The basic idea is to run a

rounding technique for the group Steiner tree problem

on a tree due to Garg et al [18] (whose online version

was given by Alon et al [2]) for every subtree of the
rooted input tree. We will show that the integer solution

connects at least one pair of vertices from each ter-

minal group pair (Si,Ti) with probability Ω(1/ log2 n).
Moreover, the expected cost of the integer solution is

O(hα), where α is the (offline) optimum cost and h
is the height of the input tree. We run O(log2 n logk)
parallel instantiations of this rounding technique; using

standard analysis, we then conclude that all terminal

group pairs are satisfied with probability at least 1−1/k.

This allows us to add the cheapest path from a vertex in

Si to a vertex in Ti for an unsatisfied group pair (Si,Ti);
the expected overhead because of this step is O(α) since

the cheapest path has cost at most α .

Suppose the new group pair in an online step is

(Si,Ti). Our first step is to identify a collective flow

of one between vertices in Si and Ti that can be

supported by the fractional solution. We decompose this

flow into flow paths characterized by their endpoints

(si1, ti1),(si2, ti2), . . . where si j ∈ Si, ti j ∈ Ti. Let f (v)
i (e)

(resp., f (v)
i (u)) denote the total flow routed through

edge e (resp., vertex u) on flowpaths such that the

least common ancestor13 of si j, ti j in the input tree R
is vertex v. Here, e is an edge and u is a vertex in the

subtree rooted at v in R (we denote this subtree Rv). For

technical reasons, we double the value of f (v)
i (v). This

lets us view the flow from Si to Ti through v in Rv as

13The least common ancestor of two vertices in a tree is their
deepest common ancestor.



a flow from Si to v and a separate flow from Ti to v
of the same value. Now, let x(v)

i (e) = max j≤i{ f (v)
j (e)}

and x(v)
i (u) = max j≤i{ f (v)

j (u)}. Observe that x(v)
i (e) and

x(v)
i (u) are monotonically decreasing as we move down

from the root v in Rv. Also, x(v)
i (e)≤ xe and x(v)

i (u)≤ xu
(after online round i). Finally, note that the values of

x(v)
i (e) and x(v)

i (u) are non-decreasing during the course

of the online algorithm (i.e. with increase in i). This lets

us apply the rounding algorithm of Alon et al [2] to the

solution x(v)
i / f (v)

i (v) twice (if f (v)
i (v) > 0) and then se-

lect the output of both instances with probability f (v)
i (v),

and reject the output with probability 1− f (v)
i (v). We

will now prove the next lemma using a technique similar

to [2].

Lemma 6. For each group pair (Si,Ti), the randomized
rounding procedure selects a path from some vertex in
Si to some vertex in Ti with probability Ω

(
1/ log2 n

)
.

Further, the cost of the integer solution obtained by the
randomized rounding procedure is O(h ·α).

In order to prove Lemma 6, we use the next lemma.

Lemma 7. For any Rv, a path is selected in the integer
solution from v to some vertex in Si and some vertex in Ti

with probability at least f (v)
i (v)/ log2 n. Moreover each

edge e (resp., vertex u) in Rv is selected with probability
at most 2x(v)

i (e) (resp., x(v)
i (u)).

Proof: Consider any v such that f (v)
i (v) > 0. Observe

that the solution x(v)
i / f (v)

i (v) is a feasible solution to the

group Steiner tree problem of connecting the group Si
(resp., Ti) to root v. Alon et al’s analysis (in particular,

Lemma 12 in [2]) implies that the rounding algorithm

connects some vertex in Si to v with probability at least

1/ logn in the first instance, also some vertex in Ti
to v with probability 1/ logn in the second instance.

Since, the two runs are independent and we select the

output with probability f (v)
i (v), we conclude that a path

is selected from some vertex in Si to Ti through v with

probability at least f (v)
i (v)/ log2 n.

To bound the cost, observe that the rounding algo-

rithm of Alon et al [2] in a single run selects any

edge e with probability at most x(v)
i (e)/ f (v)

i (v) and

we conditionally select it with probability f (v)
i (v). This

implies that over the two rounds, we select edge e with

probability at most 2 · x(v)
i (e)

f (v)
i (v)

· f (v)
i (v) = x(v)

i (e). A similar

argument proves the bound for each vertex u. �

Using the above lemma, we now prove Lemma 6.

Proof of Lemma 6: For any group pair (Si,Ti), the

probability that a path between some si ∈ Si and some

ti ∈ Ti is selected is

1−∏
v∈V

(
1− Ω( f (v)

i (v))
log2 n

)
= Ω

(
1

log2 n

)
,

since ∑v∈V f (v)
i (v) = 1.

To bound the cost of the integer solution, note that

each vertex u or edge e appears in at most h subtrees Rv,

and the integer solution obtained from each tree Rv has

cost at most ∑u∈Rv x(v)
k (u) + ∑e∈Rv x(v)

k (e) ≤ ∑u∈Rv xu +
∑e∈Rv xe ≤ α . �

Lemmas 5 and 6 immediately imply Theorem 5.

4. ONLINE GROUP STEINER FOREST IN GENERAL

GRAPHS

In this section, we use the online NW group Steiner

forest algorithm on trees (from the previous section) to

obtain algorithms for the corresponding NW and EW

problems on general graphs.

4.1. Online Node-weighted Group Steiner Forest

We first consider the NW version of this problem

on general graphs. The following structural lemma

about an offline optimal solution (which generalizes

a similar lemma for the EW case due to Robins and

Zelikovsky [32]) is key to our reduction of this problem

to the corresponding problem on trees (proof omitted

due to lack of space).

Lemma 8. Given any instance of NW group Steiner for-
est problem on a graph G = (V,E) with terminal group
pairs T = ((S1,T1),(S2,T2), . . . ,(Sk,Tk)) (Si,Ti ⊆V for
1 ≤ i ≤ k), there exists another instance of the NW
group Steiner forest problem on a graph G′ = (V ′,E ′)
where V ⊆ V ′ with the same terminal group pairs
T = ((S1,T1),(S2,T2), . . . ,(Sk,Tk)) such that

1) For any feasible solution H for the the instance
on graph G, there exists a feasible solution H ′
for the instance on graph G′ such that c(H ′) ≤
c(H) · logn.

2) For any feasible solution H ′ for the instance on
graph G′, there exists a feasible solution H for
the instance on graph G such that c(H)≤ c(H ′).

Moreover, there is an optimal solution H ′ for G′ such
that every tree in H ′ has depth at most logn.

Using Lemma 8, we construct a reduction from NW

group Steiner forest on general graphs to trees, and show

the next lemma.

Lemma 9. Given an instance of the group Steiner forest
problem on a graph G = (V,E) such that each tree of



the optimal forest has depth at most logn, there exists
an instance of the group Steiner forest problem on a tree
T of size O(nlogn) such that every feasible solution on
G corresponds to a feasible solution on T of the same
cost and vice-versa.

Proof: Given an instance of the NW group Steiner

forest problem on a graph G = (V,E) such that every

tree has depth at most logn in the optimal solution, we

construct the tree R as follows. The tree R = (VR,ER)
has logn + 1 levels indexed by 0,1,2, . . . , logn. Level

i contains ni copies of each vertex in V , the cost of

each copy of a vertex being its cost in G. To index

these vertices, let us first arbitrarily index the vertices

in V as {v1,v2, . . . ,vn}. Then, the vertices in level i are

denoted by (vp, j1, j2, . . . , ji) where each 1≤ js ≤ n and

1≤ p≤ n. The set of edges E comprises for each i≥ 0,

edges between (vp, j1, j2, . . . , ji) and (vq, j1, j2, . . . , ji, p)
for each 1 ≤ p,q ≤ n, of cost dvpvq , i.e. the distance

between vertices vp and vq in graph G. For a terminal

group pair (Si,Ti) in the NW group Steiner forest

problem, we introduce a set (S′i,T ′i ) where S′i contains

all copies of the vertices in Si and T ′i contains all copies

of the vertices in Ti.

Consider any group Steiner forest H in G. Without

loss of generality H is a forest. Root every tree T of

H at any vertex, say vT . Indeed, it is easy to see that

there is a copy of this tree rooted at the unique copy

of vertex vT at level 0. Observing this for every tree T ,

we obtain a solution H ′ in the tree R of cost equal to

the cost of H.

Consider any group Steiner forest H ′ on the tree R.

Without loss of generality H ′ is a forest. For any tree

T ′ in H ′, there exists a subgraph T in G connecting

exactly the same set of nodes connected by T ′ and of

no greater cost. This follows from the fact that every

edge between a copy of node u and v in R corresponds

to a path between u and v in G. Hence, H is a group

Steiner forest. �

Lemma 9 and Theorem 5 immediately lead to a proof

of Theorem 2.

4.2. Online Edge-weighted Group Steiner Forest

We now give a polynomial-time algorithm for the

online EW group Steiner forest problem and prove

Theorem 3. The algorithm follows from a simple re-

duction to the EW group Steiner forest problem on a

tree using small-depth low-distortion probabilistic tree

embeddings [17].

Lemma 10. Given any instance of the online EW group
Steiner forest problem on a graph G = (V,E), there

exists a distribution on trees T = (V,ET ) such that
1) Every feasible solution H on G corresponds to a

feasible solution H ′ on T such that ET [c(H ′)] ≤
c(H) · logn.

2) Every feasible solution H ′ on any tree T corre-
sponds to a feasible solution H on G such that
c(H)≤ c(H ′).

Moreover, the height of any tree T in the support of the
distribution is O(logΔ) where Δ is the diameter of G
and minimum length is one. Also, on any root to leaf
path, the length of the edges decreases by a factor of 2
at every step.

Proof: Consider the shortest path metric d on G = (V,E)
with weights given by ce on edge e. The result of

Fakcharoenphol et al [17] shows that there exists a dis-

tribution on tree metrics such that the average distortion

is at most O(logn). Moreover, each tree in the support of

the distribution has depth logΔ where Δ is the diameter

of the graph; further, the length of an edge at level i is

2i and the minimum distance between any two vertices

is 1. �

We sample one tree from the distribution given by the

above lemma, and solve the online EW group Steiner

forest problem on this tree using the algorithm given

in Theorem 5. The competitive ratio of this random-

ized algorithm, in expectation, is O(log4 n logk logΔ).
To remove the dependence on Δ we apply standard

doubling tricks. We maintain a guess α of the optimal

solution which we double each time we find it to be

infeasible. At every update of α , we select all edges of

the tree of length at most α/n2 in the solution. When a

terminal set pair (Si,Ti) arrives, we delete all edges of

the tree of length more than α and the solve the linear

program on the forest thus obtained. If in any iteration,

we find that the instance is infeasible or if the cost of

the linear programming solution is more than α , then

we double our guess of α . This leads a new level of

edges to be included in the forest over which we solve

the problem. Theorem 3 now follows from the following

observations:

• The final guess α satisfies α ≤ 2OPTlogn where

OPT is the final optimal solution.

• The cost of cheap edges included in the solution

due to contraction is at most αn
n2 ≤ 2OPTlogn

n .

• The integer solution obtained after rounding the

fractional solution has cost at most α log3 n logk≤
O(log4 n logk)OPT.
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